scDrug+: predicting drug-responses using single-cell transcriptomics and molecular structure - 23/07/24
Abstract |
Predicting drug responses based on individual transcriptomic profiles holds promise for refining prognosis and advancing precision medicine. Although many studies have endeavored to predict the responses of known drugs to novel transcriptomic profiles, research into predicting responses for newly discovered drugs remains sparse. In this study, we introduce scDrug+, a comprehensive pipeline that seamlessly integrates single-cell analysis with drug-response prediction. Importantly, scDrug+ is equipped to predict the response of new drugs by analyzing their molecular structures. The open-source tool is available as a Docker container, ensuring ease of deployment and reproducibility. It can be accessed at scDrugplus.
Le texte complet de cet article est disponible en PDF.Highlights |
• | scDrug+ integrates single-cell analysis with drug-response prediction. |
• | scDrug+ predicts responses of novel drugs on cell subpopulations. |
• | Matrix factorization and SVM with molecular fingerprints show superior performance. |
Keywords : Drug-responses, Single-cell transcriptomics, Machine learning, Precision medicine
Plan
Vol 177
Article 117070- août 2024 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Déjà abonné à cette revue ?